
b-A165 231 MONITORING AN ADA SOFTWARE DEYELOPNENT(tU) MARYLAND UNIV 1/1
COLLEGE PARK V BASIL! ET AL DEC 82 NS8hi4-82-K-8225

UNCLASSIFIED FV'G 9/2 UL

"" .0 L5. m
L__ 13 12.2

.6

Io 112.0

I1111 1.

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS- 1963-A

.~ 'qX

NEWSLETTER -DECEMBER 1982 0VOLUME I, NUMBER 2

MONITORING AN ADA SOFTWARE DEVELOPMENT

Victor Basili J John Bailey
(V) John Gannon E CZ : C Elizabeth Kruesi

Elizabeth Katz 0 0(Sylvia Sheppard
P. Marvin Zelkowitz PR 06
(0 University of Maryland General Electric Company

' This research program is monitored by the Office of Naval Research (ONR) under contract *NO014-82-K-0225 to the
University of Maryland with funding from ONR and the Ada Joint Program Office.

This newsletter is the second in a series development process. As a result, we are
describing a collaborative effort by research collecting detailed information from this
teams from General Electric and the University software development to characterize both the
of Maryland. The purpose of this research effort underlying process and the evolving product.
is to monitor the use of Ada on a realistically This gives us the immediate benefit of having a
large and complex software development complete record for gaining insight into the
project within industry. In particular, we are project's successes and failures. We also view
interested in investigating areas of success and this as a step toward selecting a general set of
areas of difficulty in designing and coding with measures and measurement procedures that will
Ada so that proper emphasis will be placed upon be useful for any software development project.
these areas in future Ada training courses. We
area also interested in identifying metrics that There is an increasing awareness in the
are useful for evaluating and predicting the software engineering community of the need for
complexity, quality, or cost of Ada programs., systematic measurement. However, there has

T n r lbeen little agreement of what characteristics to
The firstnewsletterwaspublishedintheJulyi measure and of how to make use of these

August 1982 issue of Ada LETTERS. A copy Cf measures. Our approach to measurement for
that newsletter may be obtained by writing to this project was to define a number of goals or
Dr. Elizabeth Kruesi, General Elecj'ic objectives for the data-collection effort. We then
Company, 1755 Jefferson Davis Higb!.vay, defined a number of specific questions or
Arlington, Virginia 22202. / hypotheses related to each goal. Data collection

forms and procedures were developed to
We are issuing periodic newsl ers for two address these questions. The final step involved

purposes: (1) to receive fee ack from our integrating these forms and procedures into the
colleagues regarding ourFap&proach, goals, and software development methodology.
results and (2) to qgieky disseminate our results

' so that othcrs-cfi benefit from our experience. Appendix A of the first newsletter delineated
• Please address comments or questions to eight goals that were concerned with

E. Kr'uesi. characterizing the software development
process and the programmers' use of Ada as a

In'this newsletter, we briefly describer,,our design and coding language. The appendix of
approach to data collection followed by a the current newsletter lists an additional set of
description of the software development project goals and questions. These focus upon
that we are monitoring. We then address measurements to predict programmer effort and
several central issues related to the use of Ada in program quality and upon the ease and efficiency
the design phase of this project. with which those measurements can be

collected.
Data-Collection Goals

The Software Development Project
A major purpose of this research project is to

integrate measurement into the software The software project involves re-

OTC FILE CO1 d"'112

ni dlh'rb~l:. .- ... :.. _. : " 1 2

implementation in Ada of a portion of a the software as possible. The software develop-
working ground support system for ment is scheduled for completion in December
communication satellites. The original system 1982. Analysis of the data collection by the
consists of approximately 100,000 lines of General Electric - University of Maryland
FORTRAN and assembly code which was teams will continue through July 1983.
developed by General Electric's Space Systems
Division in Valley Forge, Pennsylvania. With The remainder of this newsletter describes
the help of the original designers, we selected a results from the Ada training and issues related
subset of the original requirements for redesign to the methodology used on this project.
and implementation in Ada. This subset was
chosen to meet two criteria. First, we wanted a Ada Training
self-contained unit of several functions that
could be developed and tested apart from the As noted above, the first month of the project
larger system. A second criterion was that the was devoted to training. The training began
development effort be of a size and complexity with a series of twenty-one videotapes which
to be completed by three programmers and a were produced by Honeywell. These tapes
program librarian within an eleven-month feature a series of lectures by language designers
period. It was known that some of this calendar Ichbiah, Firth, and Barnes and encompass a
time would be required for training in Ada and total of fifteen hours. The team then attended
in the project methodology. We also anticipated six day-long lectures by George W. Cherry of
a lower-than-normal level of productivity from Language Automation Associates. The lectures
the programmers due to the extremely thorough extended over a four-week period. Between
data collection procedures instituted by the classes the team practiced compiling and
research team and to the lack of a production executing sample programs on the NYU

* quality compiler and set of support tools. The Ada/Ed interpreter. The DoD Draft Reference
software is described in more detail in the first Manual for the Ada Programming Language
newsletter. and a number of relevant articles were also

provided.
.Project Phases

rThe formal training was completed in March,

The project began in February 1982 with a aJthough the backup programmer and third
month of formal training in Ada. Following programmer spent parts of the next three
this, the lead programmer and back-up months writing small Ada programs to try out
programmer wrote the project requirements various features. Thus, the training phase
using the requirements from the larger project continued beyond the cad of formal training for
as a starting point. The resulting requirements these two team members. During this period,
document describes a complete subsystem each programmer was asked to complete an
which is executable apart from the larger attitude survey. The programmers were also
system. interviewed to obtain additional information

about their reactions to the training and to Ada
None of the team members worked on the in general.

*original system and they have not had access to
the original design or code. It was assumed that A major factor that appeared to influence
such accesses might bias their Ada design to be their initial reactions to Ada was the extent of
like the FORTRAN-based design for the their experience with other programming
original system. The designers of the original languages. The programming team was
system were, however, available for consulta- originally chosen to provide a diversity of
tion during this period. A formal requirements backgrounds. The lead programmer had ten
review was held in early May. years of experience in the application area and

prior supervisory experience. He is, however,
Following this review, a high-level design was typical of long-time industry programmers in

produced in an Ada-like program design that he had not had experience with a wide
language (PDL). This design was then refined variety of langauges; he had used only
into a more detailed design for each module of FORTRAN and assembly languages. The
the system. Coding began in August. The code other two programmers on the project had less
is currently being compiled on the NYU experience in the application but a greater
Ada/Ed interpreter. In addition, the team is diversity of language experience. At the conclu-
attempting to unit test and integrate as much of sion of the Ada training course, they expressed a

2

* much higher degree of confidence than the lead community over several attributes of an Ada-
programmer in their ability to use Ada's based PDL. The primary issues are whether the
features effectively. The greater confidence of PDL should be acceptable to an Ada compiler
the two programmers was probably partly due or to some other processing tool and whether it
to their past experience and partly due to the should be composed of a subset or superset of
extra time they spent trying various features of Ada.
Ada.

4Our team began the design phase with the
Software Design Methodology intent of using compilable Ada as the design

language. As part of the initial training period,
As noted earlier, the formal requirements the use of a PDL was explained along with the

review was followed by a two-step design phase. concept of stepwise refinement.
These two steps emerged as a result of several
issues that arose in attempting to use Ada as a We recognized immediately that when the
program design language (PDL). Before primary emphasis was to design using
discussing these issues, it is worth noting that compilable Ada, the resulting design evolved as
there were several software development tech- increasingly detailed threads of functionality
niques that were integrated in a straight- rather than as complete descriptions of the
forward manner into the design methodology, system at each level. That is, each team
These included the use of a project librarian to member tended to follow one function through
maintain strict configuration control, a strong the various design levels, filling in greater detail
reliance on design walkthroughs for error detec- at each lower level for that function. This
tion, and the use of a lead programmer to super- contradicted the idea that a proper stepwise
vise the evolution of all components in the refinement should result in a complete
system. description of the system at each level before

being further refined to the next lower level of
While these techniques worked well, th.e detail. In an attempt to eliminate this tendency,

team's attempts to use Ada as a PDL were less two design phases were defined. The first phase
straight-forward and required some degree of involved a brief description of each known
experimentation. We feel there is value in component in the system. The purpose of each
describing the team's experience in using Ada component was described in only enough detail
as a PDL. We then turn to what is probably a to provide traceability of functionality from the
more critical design issue - the question of the requirements into the design. Any known
basis for decomposing a system into inputs and outputs were also noted. The
components. purpose of this design was to focus the team's

attention on each complete level of design detail
Ada asaPDL and to emphasize traceability to the

requirements.
PDL is rapidly replacing flowcharts as a

design medium and has been used to assist in The goal of the second phase was to write a
many stages of the software life cycle. Besides more precise design. In addition to providing
serving as an aid for simplifying the coding specific algorithms and complete interface
process, it is used as a means of tracing specifications, all data types were defined and
functionality from the requirements, as a all objects declared. A design walkthrough was
medium of communication among designers, as held at the end of each phase for each

: a deliverable to verify the feasibility of a design, component. These two design phases were
2$ as an aid to creating test plans, and as followed by the coding phase for each

documentation to aid in maintaining the component.
system.

We do not necessarily feel that the approach
-' ~.There appears to be general agreement in the used, and outlined here, was the best way to

Ada community that Ada provides many of the have developed the software. Although it did
features required of a design language and can result in an apparently workable design, we
therfore serve as the basis for a PDL. We have experienced several difficulties during
learned, however, that there is a big step development and are currently in the process of
between this notion and actually defining the evaluating the causes and potential remedies for
structure of a useful PDL. Over the past year, these. More detail will be published about this
there has been much debate in the Ada in the near future.

Design Decomposition Issues important factor. Programmers who have used
a number of different languages, particularly

At this point, all components have been Pascal and Algol, are familiar with a greater
designed and nearly all have been coded. A number of relevant concepts than those who
review was conducted early in October to have used only assembly languages or
evaluate the development and, in particular, to FORTRAN. The latter group includes a great
address Ada's impact on the design. In addition many industrial programmers.
to the General Electric - University of Maryland
research teams, the review was attended by the The programming team felt unanimously
chief engineer of the original system and by two that any Ada training course should begin with
members of General Electric's Corporate a discussion of the software engineering
Research and Development staff who have concepts that are supported by various features
extensive Ada experience. The outcome of this in the Ada language. Such an introduction, for
evaluation will be covered in more detail in a example, would include a discussion of the
later newsletter. A few of the major points are importance of a concern for software
worth mentioning here. modifiability, re-usable software components,

and runtime reliability. The specific software
engineering techniques which support these

The design was judged to be a good, concepts could then be introduced. For
workable design. The implementation used a example, Parnas' notion of information hiding
wide variety of the features of the language, could be discussed as a design technique which
including such advanced features as task types is intended to result in modifiable software.
and discriminant records. The design, however, After discussion of these concepts and
was characterized as a functional one which is techniques, the training could then proceed to a
more like than unlike the original (FORTRAN- concentration on the syntactic structures of the
based) system. This result is not surprising language. The rationale for this type of

" considering that the requirements were defined approach to training is that one does not
in such a way that one might easily expect a necessarily gain an understanding of how to use

* functional design to emerge. A question was a language feature simply from viewing
raised concerning whether an alternative design examples of the feature in sample program
approach, variously referrred to as object- segments. Each new feature needs to be taught
oriented, message-based design, or designing in such a way that it can incorporated into a
with abstract data types had been considered. framework of related ideas already present in
Although examples of data abstraction and the programmer's knowledge base.
encapsulation were presented in the Ada course,
the focus was on' the language features that Beyond these specific suggestions, we
support those ideas rather than on the ideas eond these specifcosuggest we
themselves. It was agreed that this approach, recognize the need for a coherent software",being new to all members of the team, would development methodology using Ada. While
have r equire additional education and the language was designed to support a numberguidance beyond the scope of the classroom of software engineering concepts, it is notexa se eln trn f te rtv immediately obvious how to integrate theseexamples. The relevant training for alternative concepts into a coherent methodology. As noted
design approaches has to come early in a concept o aocohre metog Ased
development since it impacts the very first earlier, our software development team used a
design decisions and perhaps even the functional decomposition for the design of the
r i e als asystem. This may not be the best basis for

decomposing the system if one is attempting to

Preliminary Rome t for Training maximize its later maintainability. On the other
Courses hand, other aspects of the team's design strategy

were successful, such as assuring traceability of

As a result of observations made throughout functionality from the requirements.

this project and on the basis of interviews with
the team members, we have several specific The current Methodman effort, supported by
suggestions for improving Ada training. We the Ada Joint Program office, is tasked with
suggest, first of all, that different courses be defining a recommended set of methodologies to
tailored to those with different backgrounds. be employed for Ada development and
The breadth of a programmer's previous maintenance efforts. Our experience suggests
language experience will undoubtedly be an that the Methodman effort is badly needed.

4

u !6 V -P~' d

It is important to note that these observations Goal Cl: Select a set of static (size,
have resulted from a preliminary analysis and control and data) metrics for
are representative of our current reactions to the APSE
using the Ada language on this project. We are
gathering a great deal of objective data about 1) Are there differences in the
the use of Ada during the design, code, and implications of various counting
testing phases of this project. As part of the data measures? Are some measures more
collection, for example, we are tracking all useful than others?
errors detected. We are also obtaining the 2) Do certain program measures
subjective judgments of people well versed in provide enough information to make
Ada concerning the extent to which the other measures superfluous?
language has been used properly or improperly 3) Which static metrics can be applied
on our project. Finally, we are obtaining a throughout the design and code
number of measures (both static and dynamic) phases. Which cannot?
to characterize the resulting software. A full 4) Which static metrics help predict
picture concerning the programming team's run-time behavior (e.g., reliability,
difficulties and successes with Ada must await etc.)?

. the collection and analysis of the complete set of 5) Which static metrics can be
data. measured most easily?

APPENDIX Goal C 1. 1: Develop a set of size metrics for
the APSE

Area C : Goals Relating to Metrics for
the APSE 1) What size metrics best predict effort?

2) What serves as a useful size metric
General Goals (e.g., lines of code, modules) in Ada?

3) What constitutes a statement in
Provide a database for future Ada projects Ada?

* to be used to predict important properties of 4) How should an executable statement
these projects (e.g., development effort). be defined in Ada?

5) What features of Ada should be
Select a set of measures that can be grouped when counting the number
collected during development and are useful of times certain features are used?
for predicting the operational characteristics 6) How useful is Halstead's software
of the system such as its reliability and science approach with Ada?
maintainability. Goal C1.2: Develop a set of control metrics

Select a set of measures to provide software for the APSE
*developers and managers with useful

feedback during software development. 1) How can tasking and exceptions be
integrated into the control metrics?

Note: These goals will be addressed by 2) How useful is McCabe's cyclomatic
evaluating the usefulness of a number of complexity measure? How does the
different types of measures. A basic cyclomatic complexity compare with
distinction can be made between measures the essential complexity?
of the software development process and 3) How useful are measures of nesting

v,. those of the product. Appendix A of the complexity and depth?
first newsletter was largely concerned with
measures of the process. The goals listed in Goal C1.3: Develop a set of data metrics
the current newsletter are primarily fo th e
concerned with product measures. Product
measures can be broken down into static 1) How can the complexity of data
and dynamic (run-time) measures of the structr be mpse d
product. The following goals support the structures be measured?.. more general onslisted above. 2) What influences the number of

ones programmer defined types?

Arm A d 5 ("Gonenc Gol fo any 3) How does the use of Ada influence
Project' and "Goala Reang to Ada a a Design and Inpamen. the number of inputs to and outputs
tanon Lanuag") wee listed in Appendix A of the tirm newsletter, from a module?

5 . q • . • - - " " w " . " " % % s

4) How does Ada influence the use of Goal C2.2: Develop a set of execution
global data? metrics for the APSE

5) How does the use of modules affect
the treatment of data within a 1) What are useful execution metrics?
program? 2) What additional information do

6) How should the span of a variable execution statistics provide beyond
be measured? Is there a use for the what can be gained from a static
span information? view of the system?

7) What do the data bindings suggest 3) Are there measures of execution
about the structure of the system? complexity?

8) Does the density of the data flow 4) Are certain Ada features or
across modules provide useful combinations of features expanded
feedback about the structure of the into very fast or very slow code?
system? i.e., are information flow
metrics (Henry & Kafura) useful? Goal C3: Develop a subjective evaluation

system for evaluating some
Goal C2: Select a set of dynamic (test program and design features

coverage and execution) that are not easily or
metrics for the APSE practically measured in other

ways
Goal C2.1: Develop a set of test coverage

metrics for the APSE 1) Can a diverse set of experts (Ada,
applications, and methodology

1) Do any of the following measures of experts) accurately evaluate the
test coverage lead to a useful strategy subjective aspects of the project?
for testing: number of statements 2) How well do the results of these
executed? number of decisions evaluations correlate with results
executed, or number of independent from objective measures?
paths executed? 3) How well do these evaluations

2) Can these measures be extended to correlate with the opinions of the
provide test coverage for concurrent development team?
processing or will new measures need 4) Can we conclude anything from the
to be developed? Are there measures subjective results?
to detect starvation, potential
deadlocks, etc.?

3) Are there other features of Ada (e.g.,
exception handling) that require new
measures for test coverage? What are
those measures?

Accessio Fo r

NTIS 'I
I DTTC T

ristr, -l

IN

.4b-

DT I

N~ E

